Annual 2005 Groundwater Monitoring Report

Former Aboveground Diesel Tank Site Samoa, California Case No. 1NHU764

Prepared for:

Simpson Samoa Corporation Arcata, California

Reference: 000060

Annual 2005 Groundwater Monitoring Report

Former Aboveground Diesel Tank Site Samoa, California Case No. 1NHU764

Prepared for:

Simpson Samoa Corporation Arcata, California

Prepared by:

Consulting Engineers & Geologists, Inc.

812 W. Wabash Avenue Eureka, CA 95501-2138 707-441-8855

January 2006

Table of Contents

			Page
1.0	Intro	ductionduction	1
	1.1	Background	1
	1.2	Objective	3
2.0	Field	Activities	4
	2.1	Monitoring Well Sampling	4
	2.2	Laboratory Analysis	4
	2.3	Equipment Decontamination Procedures	4
	2.4	Investigation-Derived Waste Management	4
3.0	Grou	ndwater Monitoring Results	
	3.1	Hydrogeology	
	3.2	Groundwater Analytical Results	5
	3.3	Natural Attenuation Parameters	6
4.0	Discu	ssion and Recommendations	6
5.0		ences Cited	
			······································
Appe	ndices		
	A.	Historic Monitoring Data	
	B.	Field Notes	
	C.	Laboratory Analytical Report	
List	of Ill	ustrations	
Figur	es		Follows Page
	1.	Site Location Map	1
	2.	Site Plan	
	3.	Groundwater Contours, August 30, 2005	
	4.	TPHD Concentrations in Groundwater, August 30, 2005	6
	5.	TPHD Concentration over Time, Wells MW-3 and MW-4	on page 7
	6.	Predicted TPHD Concentration over Time, Wells MW-3 and MW-4	on page 8
	7.	TPHD Concentration vs Time Since June 2003 Excavation	on page 9
Table	s		Page
	1.	Groundwater Elevations, August 30, 2005	5
	2.	Groundwater Analytical Results, August 30, 2005	5

3.

Abbreviations and Acronyms

denotes a value that is "less than" the method detection limit

ft/ft feet per foot mV millivolts

ppm parts per million ug/g micrograms per gram ug/L micrograms per Liter

ASTs Above Ground Storage Tanks

BGS Below Ground Surface

BTEX Benzene, Toluene, Ethylbenzene, and total Xylenes

DCO₂ Dissolved Carbon Dioxide

DIPE Diisopropyl Ether
DO Dissolved Oxygen
EC Electrical Conductivity

EPA (U.S.) Environmental Protection Agency

ETBE Ethyl Tertiary-Butyl Ether

ETH Ethanol

INS Insufficient product for measurement

MSL (feet above) Mean Sea Level MTBE Methyl Tertiary-Butyl Ether

MW-# Monitoring Well-# NA Not Applicable

ND Not Detected at the laboratory detection limit

NM Not Measured NR Not Recorded NS Not Sampled

ORP Oxidation-Reduction Potential

RWQCB California Regional Water Quality Control Board, North Coast Region

SHN Consulting Engineers & Geologists, Inc.

SSC Simpson Samoa Corporation TAME Tertiary-Amyl Methyl Ether

TPHD Total Petroleum Hydrocarbons as Diesel
TPHG Total Petroleum Hydrocarbons as Gasoline

WP-# Well Point (Boring)-#

1.0 Introduction

This report presents the results of biannual groundwater monitoring and sampling activities conducted by SHN Consulting Engineers and Geologists, Inc. (SHN) during the second half of 2005, at the Simpson Samoa Corporation (SSC) facility. The SSC site is located in the community of Samoa in Humboldt County, California (Figure 1). SHN conducted the monitoring event on August 30, 2005.

This report is presented in 5 sections. This section introduces the reader to the site. Section 2.0 discusses the scope of work completed at the site during the third quarter 2005 monitoring event, including groundwater well sampling. Section 3.0 presents the results of the groundwater-monitoring program. Section 4.0 presents conclusions regarding the nature of the site, as well as recommendations for future activities. Section 5.0 presents a list of references cited.

1.1 Background

The subject site is the location of 2 former 10,000-gallon steel diesel Aboveground Storage Tanks (ASTs) previously used to fuel equipment and vehicles. The former ASTs were located in the northern portion of the SSC facility, as shown on the site plan included as Figure 2. In the fall of 1998, the 2 ASTs were removed from the facility. A site investigation was conducted by SHN on June 19, 2000, which included the drilling and sampling of 10 soil borings (borings WP-1 through WP-10), and the installation and sampling of 10 well points (well points WP-1 through WP-10). The analytical results from this investigation indicated the presence of petroleum hydrocarbonimpacted soil and groundwater in the vicinity of the former ASTs (SHN, 2000). The soil and groundwater analytical results are summarized in Appendix A, Tables A-1 and A-2. Based on the results of the June 2000 site investigation, SHN recommended that groundwater-monitoring wells be installed at the site, and a quarterly groundwater monitoring program be implemented.

On January 18 and 19, 2001, SHN supervised the installation of 5 groundwater-monitoring wells (SHN, 2001). Soil borings MW-1 through MW-5 were drilled and sampled in the area of the former ASTs utilizing a truck-mounted hollow stem auger rig. Each boring was subsequently converted into a groundwater monitoring well. Soil samples collected from each boring were analyzed for Total Petroleum Hydrocarbons as Diesel (TPHD), and as Gasoline (TPHG), Benzene, Toluene, Ethylbenzene, and total Xylenes (BTEX), and Methyl Tertiary-Butyl Ether (MTBE).

TPHD was detected in the soil samples collected from borings MW-2 and MW-5, at concentrations of 390 micrograms per gram (ug/g), and 8.4 ug/g, respectively. TPHD was not detected in any of the other soil samples collected. Toluene was detected in the soil samples collected from borings MW-1 and MW-5, at concentrations of 0.0056 ug/g and 0.0052 ug/g, respectively. No other BTEX components were detected in any of the soil samples submitted for laboratory analysis.

Groundwater samples were collected from monitoring wells MW-1 through MW-5 on January 25 and 26, 2001. Each groundwater sample was analyzed for TPHD, TPHG, BTEX, and MTBE. TPHD was detected in groundwater samples collected from monitoring wells MW-1 through MW-4, at concentrations ranging from 270 micrograms per Liter (ug/L) in monitoring well MW-1, to 4,700 ug/L in monitoring well MW-2. TPHD was not detected in the groundwater sample collected from monitoring well MW-5. TPHG was detected in the groundwater sample collected from monitoring

well MW-2, at a concentration of 360 ug/L. TPHG was not detected in any of the other groundwater samples submitted for laboratory analysis. Based on these results, a quarterly monitoring program was implemented.

In a letter dated December 3, 2001, the RWQCB requested that the horizontal and vertical extent of soil and groundwater contamination in the area of the former ASTs be further characterized, as part of the long-range strategic plan for the site. During the second quarter of 2002, SHN observed the installation of 4 exploratory soil borings (WP-101 through WP-104) at the site, utilizing a truck-mounted Geoprobe® unit. One soil sample was collected from each soil boring and submitted for laboratory analyses. In addition, temporary well points were installed and sampled in each boring utilizing the Geoprobe® direct push system, for the purpose of collecting groundwater samples. Well point WP-101 was intended to assess groundwater conditions to the west of the former AST location. Well point WP-102 was intended to assess groundwater conditions northwest of the former AST location. Well point WP-103 was intended to assess groundwater conditions to the east of the former AST location. However, access in the area of this well point was limited due to the presence of large pieces of concrete rubble. Although well point WP-103 was placed close to the proposed location, it was not possible to access an additional location further east of that well point. Well point WP-104 was intended to assess groundwater conditions northeast of the former AST location.

Laboratory analyses of the soil samples collected indicated the presence of TPHD in boring WP-103, at a concentration of 5.0 ug/g. The laboratory noted that the material that was reported as TPHD contained material in the diesel range of molecular weights and beyond, suggesting the presence of oil heavier than diesel. TPHD was not detected in any of the other soil samples that were collected. No detectable concentrations of either BTEX components or MTBE were present in any of the soil samples that were submitted for laboratory analyses.

TPHD was detected in each groundwater sample collected, at concentrations ranging from 110 ug/L in well point WP-103, to 140 ug/L in well points WP-102 and WP-104. The analytical laboratory noted that the samples contained material that did not exhibit the peak pattern typical of diesel oil. No BTEX compounds or MTBE were detected in any of the groundwater samples that were submitted for laboratory analysis. Historic soil and groundwater analytical data are included in Appendix A, Tables A-1 and A-2, respectively.

Between May 30 and June 3, 2003, an estimated 684 tons of petroleum hydrocarbon-impacted soil were excavated from the SSC facility (SHN, 2003). Prior to commencing the excavation work, the concrete secondary containment structure used to hold the former ASTs was removed. Monitoring well MW-2, located within the excavated area, was subsequently destroyed during the soil removal activities. The well construction materials, including the well casing, screen and sand pack, were completely removed. Soil samples were collected from the excavation sidewalls to assess post-excavation subsurface conditions. It was originally proposed to collect soil samples from the floor of the excavation. However, by the time the soil removal work was completed, water had collected in the bottom 2 feet of the excavation. Approximately 35,000 gallons of water were subsequently pumped from the excavation into on-site holding tanks.

Upon completion of the soil removal activities, the excavation was backfilled to grade utilizing clean, imported fill material. Eight confirmation soil samples were collected from the sidewalls of

the excavated area for laboratory analysis. In addition, a water sample was collected from the holding tank containing water pumped from the excavation. TPHD was present in 7 of the 8 soil samples, at concentrations ranging from 1,000 ug/g to 25,000 ug/g. TPHD was also present in the water sample, at a concentration of 39,000 ug/L. BTEX components were not detected in any of the soil samples or the water sample submitted for analyses. The results from the investigation indicated that the lateral extent of petroleum hydrocarbon contamination was limited, and did not appear to be migrating.

On November 6, 2003, the RWQCB approved a revision to the current groundwater monitoring program to include a reduction in the sample parameters to be tested for, and to revise the monitoring plan from quarterly to semiannual.

Upon completion of soil excavation activities in June 2003, the RWQCB requested a groundwater sample be collected within the excavated area near the location of former monitoring well MW-2. SHN prepared a work plan dated March 3, 2004, to use well point technology to conduct the additional groundwater monitoring as requested by the RWQCB. The work plan was approved by the RWQCB in a letter dated March 15, 2004, with the request that an additional groundwater sample be collected below the level of the clean fill material.

On September 1, 2004, a direct-push well point (WP-201) was completed in the backfilled area of the site, adjacent to the former location of well MW-2 (Figure 2). The well point was completed in 2 stages. The first stage was intended to sample groundwater within the clean backfill material of the excavation, and the second stage was intended to sample groundwater beneath the clean backfill material. As part of the well point installation process, a hand auger boring was extended to a depth of 3.6 feet Below Ground Surface (BGS). The temporary well point and screen were then installed to a depth of 6 feet BGS using a protective drive casing.

Once the well point was set to the desired depth, the protective drive casing was retracted 3 feet to expose the screen from a depth of 3 feet to 6 feet BGS. A groundwater sample was then collected from the temporary well point. Upon completion of groundwater sampling at the 3-foot to 6-foot depth, the well point was driven to a depth of 9 feet BGS using the protective casing. The protective casing was then retracted 2.5 feet to expose the screen from a depth of 6.5 feet to 9 feet BGS. The well point was once again purged using a peristaltic pump, and sampled using a disposable polyethylene bailer. Laboratory analyses of the two groundwater samples revealed TPHD at a concentration of 24,000 ug/L in the shallow sample (excavation backfill), and 420 ug/L in the deeper sample (native material below the excavation backfill).

Biannual groundwater monitoring at the SSC facility is ongoing, as requested by the RWQCB.

1.2 Objective

The objective of the monitoring program is to assess current groundwater conditions beneath the site.

2.0 Field Activities

2.1 Monitoring Well Sampling

SHN conducted groundwater monitoring on August 30, 2005. As part of the monitoring program, wells MW-1, MW-3, MW-4, and MW-5 were purged and sampled. Prior to purging, each monitoring well was measured for depth to water, and checked for the presence of floating product (none was observed). Electrical Conductivity (EC), pH, and temperature were monitored periodically during purging activities using portable instrumentation. All 4 wells were also measured for Dissolved Oxygen (DO), Oxidation-Reduction Potential (ORP), and Dissolved Carbon Dioxide (DCO₂).

A groundwater sample was then collected from each well utilizing a disposable polyethylene bailer. The water samples were immediately placed in an ice-filled cooler, and submitted to the laboratory for analyses under appropriate chain-of-custody. Field data sheets from the August 30, 2005, groundwater-monitoring program are included in Appendix B.

2.2 Laboratory Analysis

Each groundwater sample was analyzed for TPHD, in general accordance with U.S. Environmental Protection Agency (EPA) Method Nos. 3510/GCFID/8015B.

North Coast Laboratories, Ltd., a State-certified analytical laboratory located in Arcata, California, conducted the groundwater sample analyses.

2.3 Equipment Decontamination Procedures

All monitoring and sampling equipment was cleaned prior to being transported to the site. All smaller equipment was initially washed in a water solution containing Liquinox® cleaner, followed by a distilled water rinse, then by a second distilled water rinse.

2.4 Investigation-Derived Waste Management

All rinse water utilized for decontaminating field-sampling equipment, and all purge water, was temporarily stored on site in 5-gallon buckets. The water was then transported to SHN's 1,000-gallon purge water storage tank located at 812 West Wabash Avenue in Eureka, California. Approximately 27 gallons of decontamination and purge water from the August 30, 2005, sampling event will be discharged, under permit, to the City of Eureka municipal sewer system. A discharge receipt will be provided once the disposal process has been completed. Appendix B contains the discharge receipt for the 26 gallons of wastewater generated during the previous (March 4, 2005), groundwater monitoring event.

3.0 Groundwater Monitoring Results

3.1 Hydrogeology

Depth-to-groundwater measurements were collected from each monitoring well prior to sampling, and are presented in Table 1.

Sir	Table 1 Groundwater Elevations, August 30, 2005 Simpson Samoa Former AST Site, Samoa, California									
Sample Location	Top of Casing Elevation (feet MSL) ¹	Depth to Water (feet) ²	Groundwater Elevation (feet MSL)							
MW-1	14.74	6.52	8.22							
MW-3	12.54	4.57	7.97							
MW-4	12.24	4.37	7.87							
MW-5 11.98 3.86 8.12										
MSL: Mean Sea Level Below top of casing										

During this monitoring event, the direction of groundwater flow beneath the SSC site was to the southeast, with an approximate gradient of 0.002. A groundwater contour map for the August 30, 2005, monitoring event is presented as Figure 3. Historical groundwater elevation data are presented in Appendix A, Table A-3.

3.2 Groundwater Analytical Results

The laboratory analytical results for the groundwater samples collected on August 30, 2005, are summarized in Table 2.

Table 2 Groundwater Analytical Results, August 30, 2005 Simpson Samoa Former AST Site, Samoa, California (in ug/L)¹						
Sample Location	TPHD ²					
MW-1	68 ³					
MW-3	1,2003					
MW-4	3803					
MW-5	<504					

- 1. ug/L: micrograms per Liter
- 2. TPHD: Total Petroleum Hydrocarbons as Diesel, analyzed in general accordance with U.S. EPA Method Nos. 3510/GCFID/8015B.
- 3. Sample contains material similar to degraded or weathered diesel oil.
- 4. <: Denotes a value that is "less than" the method detection limit.

TPHD was detected in the groundwater samples collected from monitoring wells MW-1, MW-3, and MW-4, at concentrations of 68, 1,200, and 380 ug/L, respectively. TPHD was not present above the laboratory method detection limit in the groundwater sample collected from well MW-5. The complete laboratory test results, QA/QC data, and corresponding chain-of custody documentation are included in Appendix C. The TPHD concentrations in existing wells on August 30, 2005, are shown on Figure 4. Historic groundwater monitoring data are presented in Appendix A, Table A-2.

3.3 Natural Attenuation Parameters

DO, DCO₂, and ORP were measured in each groundwater monitoring well prior to sampling, and are summarized in Table 3. During the August 30, 2005, monitoring event, DO concentrations ranged from 0.76 parts per million (ppm) in well MW-4, to 1.64 ppm in well MW-3. These DO concentrations are marginally sufficient to support biodegradation. DCO₂ concentrations ranged from 50 ppm in well MW-5, to 200 ppm in well MW-1, and indicate that biodegradation may be occurring at the site. ORP measurements ranged from –42 millivolts (mV) in well MW-1, to -110 mV in well MW-3. These measurements indicate that mildly reducing conditions exist at the site. Historic DO, DCO₂, and ORP measurement results are included in Appendix A, Table A-4.

Table 3 DO, DCO2, and ORP Measurement Results, August 30, 2005 Simpson Samoa Former AST Site, Samoa, California								
Sample Location	DO¹ (ppm)²	DCO ₂ ³ (ppm)	ORP ⁴ (mV) ⁵					
MW-1	1.23	200	-42					
MW-3	1.64	90	-110					
MW-4	0.76	80	-100					
MW-5	0.77	50	-100					

- 1. DO: Dissolved Oxygen, field measured using portable instrumentation
- 2. ppm: Measurement concentration, in parts per million
- 3. DCO₂: Dissolved Carbon Dioxide, field measured using a field test kit
- 4. ORP: Oxidation-Reduction Potential measured using portable instrumentation
- 5. mV: millivolts

4.0 Discussion and Recommendations

The results of this and previous groundwater monitoring events indicate that the TPHD present in groundwater beneath the site appears to be limited in extent, primarily in the former excavation pit. The groundwater gradient beneath the site is very shallow. Although detectable TPHD concentrations are present in the former excavation area, it does not appear that significant migration of petroleum hydrocarbons is occurring. Since the completion of the June 2003 excavation program, TPHD concentrations in well MW-3 have demonstrated a general decreasing trend. The TPHD concentrations in wells MW-3 (1,200 ug/L) and MW-4 (380 ug/L) were slightly higher during this sampling event, when compared to those reported during the previous event (660 and 210 ug/L), respectively.

Consulting Engineers & Geologists, Inc.

000060-TPHD-AUG-2005

Figure 4

Figure 5 shows the TPHD concentrations in monitoring wells MW-3 and MW-4 over time. Both wells show decreasing concentrations of TPHD. Approximately 684 tons of petroleum hydrocarbon-impacted soil, and 35,000 gallons of petroleum hydrocarbon-impacted groundwater were removed from the former AST area during the excavation program conducted in June 2003. Using the petroleum hydrocarbon concentrations in the removed material, this translates into the removal of approximately 2,270 gallons of diesel fuel product.

To further evaluate the long-term trends of petroleum hydrocarbons in groundwater, an extrapolation of TPHD trends was conducted using: 1) all of the TPHD data collected from wells MW-3 and MW-4, and 2) the TPHD data collected from wells MW-3 and MW-4 after the site was excavated in June 2003.

An extrapolation of TPHD trend for all data collected is shown in Figure 6. The trend shown for data collected from monitoring well MW-3 indicates that THPD concentrations would decrease to levels below the method detection limit (50 ug/L) in less than 30 years. The groundwater data from monitoring well MW-4 indicates that low concentration petroleum hydrocarbons are present in this area at concentrations that are relatively stable over time.

An extrapolation of TPHD concentrations over time in wells MW-3 and MW-4 since the June 2003 excavation is presented in Figure 7. Using the post-2003 excavation data, the overall concentration trend in well MW-3 is decreasing, however at a slower rate than that shown in Figure 6, indicating a longer time period for water quality objectives to be met. Using the trend slope shown in Figure 7 along with the highest TPHD concentration found in well MW-3 since the June 2003 excavation program, an extrapolation of expected TPHD concentrations over time was made. This extrapolation is shown in Figure 7, and indicates that TPHD concentrations in well MW-3 would drop below 1,000 ug/L in less than 25 years, and would drop below 800 ug/L in less than 40 years.

When comparing the TPHD concentration trends observed in Figures 6 and 7, it is apparent that the June 2003 excavation/dewatering program was effective in the removal of elevated concentrations of TPHD-impacted soil and groundwater. Although the TPHD concentration trend observed for data collected since the 2003 field program is flatter than that observed for all data (Figure 6), the average TPHD concentrations found in well MW-3 are significantly less (830 ug/L), when compared to those found prior to the 2003 field program (1,354 ug/L).

In order to confirm the overall decreasing concentration trend, SHN will continue semiannual monitoring of wells MW-1, MW-3, MW-4, and MW-5, in accordance with RWQCB Monitoring and Reporting Program RI-2003-0129. Groundwater samples collected during the next monitoring event will be analyzed using a silica gel cleanup in order to remove any non-petroleum hydrocarbons that may be present. The next groundwater-monitoring event is scheduled for March 2006. The March 2006 data will be used to evaluate future site activities.

5.0 References Cited

- SHN Consulting Engineers & Geologists, Inc. (August 2000). Preliminary Site Investigation Report of Findings, Above Ground Diesel Storage Tank, Simpson Samoa Corporation, Samoa Facility, Samoa, California, RWQCB Case No. 1NHU764. Eureka: SHN.
- ---. (February 2001). Monitoring Well Installation Report of Findings Simpson Former Above Ground Diesel Storage Tank Investigation Samoa, California. Eureka: SHN.
- ---. (October 2003). Soil Excavation Report of Findings, Former Diesel Aboveground Tank Site, Simpson Samoa Corporation, Samoa Facility, Samoa, California. Eureka: SHN.

Table A-1 Historic Soil Analytical Results Simpson Samoa Former AST Site, Samoa, California

(in ug/g)¹

Sample Location	Date	TPHD ²	\mathbf{B}^3	T^3	\mathbf{E}^3	X ³	MTBE ⁴
WP-1	6/19/2000	1.5	<0.005 ⁵	< 0.005	< 0.005	< 0.005	< 0.05
WP-2	6/19/2000	12	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
WP-3	6/19/2000	6,100	<0.5	<0.5	<0.5	<0.5	< 5.0
WP-4	6/19/2000	1,700	<0.5	<0.5	<0.5	<0.5	< 5.0
WP-5	6/19/2000	78	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
WP-6	6/19/2000	2.1	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
WP-7	6/19/2000	37	< 0.005	0.015	< 0.005	< 0.005	< 0.05
WP-8	6/19/2000	5.4	< 0.005	< 0.005	< 0.005	0.0066	< 0.05
WP-9	6/19/2000	1.1	<0.5	<0.5	<0.5	1.72	< 5.0
WP-10	6/19/2000	5	0.013	0.0052	< 0.005	< 0.005	< 0.05
MW-1 4-6	1/18/2001	<1.0	< 0.005	0.0056	< 0.005	< 0.005	< 0.050
MW-2 5.0	1/19/2001	390	< 0.005	< 0.005	<0.08	< 0.02	< 0.050
MW-3 4-6	1/18/2001	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.050
MW-4 4-6	1/19/2001	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.050
MW-5 4-6	1/19/2001	8.4	< 0.005	0.0052	< 0.005	0.0062	< 0.050
WP-101@6′	6/12/2002	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
WP-102@6.5′	6/12/2002	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
WP-103@3′	6/12/2002	5	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
WP-104@4′	6/12/2002	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
EP-1	6/3/2003	1,000	< 0.005	< 0.005	< 0.005	<0.005	< 0.05
EP-2	6/3/2003	15,000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
EP-3	6/3/2003	5,900	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
EP-4	6/3/2003	13,000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
EP-5	6/3/2003	<1.0	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
EP-6	6/3/2003	25,000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
EP-7	6/3/2003	7,000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
EP-8	6/3/2003	8,700	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SP-1/SP-2 ⁶	6/3/2003	9,700	< 0.005	< 0.005	< 0.005	<0.005	< 0.05
SP-3/SP-4 ⁶	6/3/2003	25,000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SP-5/SP-6 ⁶	6/3/2003	20,000	< 0.005	< 0.005	< 0.005	< 0.005	< 0.05
SP-7/SP-8 ⁶	6/3/2003	5,600	< 0.005	<0.005	< 0.005	< 0.005	< 0.05

- 1. ug/g: micrograms per gram
- 2. TPHD: Total Petroleum Hydrocarbons as Diesel
- 3. BTEX: Benzene, Toluene, Ethylbenzene, and total Xylenes
- 4. MTBE: Methyl Tertiary-Butyl Ether
- 5. <: Denotes a laboratory value that is "less than" the method detection limit.
- 6. Composite sample

Table A-2 Historic Groundwater Analytical Results Simpson Samoa Former AST Site, Samoa, California (in ug/L)¹

	(in ug/L) ²									
Sample Location	Sample Date	TPHG ²	TPHD ³	\mathbf{B}^{4}	${f T^4}$	\mathbf{E}^4	χ^4	MTBE ⁵	ETH ⁶	Fuel Oxygenates ⁷
WP-1	6/19/00	NS ⁸	510	< 0.5°	< 0.5	< 0.5	< 0.5	<3.0	NS	NS
WP-2	6/19/00	NS	3,100	<1.0	<1.0	<1.0	<1.0	<6.0	NS	NS
WP-3	6/19/00	NS	11,000	<2.5	<2.5	<2.5	<2.5	<15	NS	NS
WP-4	6/19/00	NS	1,100	< 0.5	<0.5	< 0.5	<0.5	<3.0	NS	NS
WP-5	6/19/00	NS	480	< 0.5	<0.5	< 0.5	< 0.5	3.3	NS	NS
WP-6	6/19/00	NS	2,000	<1.0	<1.0	<1.0	<1.0	11	NS	NS
WP-7	6/19/00	NS	360	< 0.5	< 0.5	< 0.5	< 0.5	7.7	NS	NS
WP-9	6/19/00	NS	76	<0.5	< 0.5	< 0.5	<0.5	<3.0	NS	NS
WP-10	6/19/00	NS	170	< 0.5	<0.5	< 0.5	<0.5	<3.0	NS	NS
Tank	6/3/03	NS	39,000	< 0.50	< 0.50	< 0.50	< 0.50	NS	NS	NS
MW-1	1/25/01	< 50	270	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	NS
	3/7/01	<50	130	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NS	ND ¹⁰
	6/7/01	<50	160	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	NS	ND
	9/6/01	<50	73	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 500	ND
	12/6/01	<50	100	<0.50	<0.50	<0.50	<0.50	<0.50	<5.0	ND except Methanol: 61
	3/6/02	<50	110	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 5.0	ND
	9/10/02	<50	190	<0.50	< 0.50	< 0.50	< 0.50	<3.0	NS	NS
	3/4/03	< 50	95	< 0.50	< 0.50	< 0.50	< 0.50	<3.0	NS	NS
	6/11/03	<50	68	< 0.50	< 0.50	< 0.50	< 0.50	<3.0	NS	NS
	9/8/03	<50	120	< 0.50	< 0.50	< 0.50	<0.50	<3.0	NS	NS
	3/2/04	NS	<50	NS	NS	NS	NS	NS	NS	NS
	9/1/04	NS	200	NS	NS	NS	NS	NS	NS	NS
	3/4/05	NS	< 50	NS	NS	NS	NS	NS	NS	NS
	8/30/05	NS	68	NS	NS	NS	NS	NS	NS	NS
MW-2	1/26/01	360	4,700	< 0.50	0.61	< 0.50	1	< 0.50	< 5.0	NS
	3/7/01	210	2,900	< 0.50	< 0.50	<0.50	1.8	< 0.50	NS	ND
	6/7/01	<250	3,300	<1.3	<1.3	<1.3	<1.3	<1.3	NS	ND
	9/6/01	450	12,000	<1.0	<1.0	<1.0	<1.0	<1.0	<1,000	ND
	12/6/01	NS	NS	NS	NS	NS	NS	NS	NS	NS
	3/6/02	NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/10/02	490	18,000	< 0.50	< 0.50	< 0.50	< 0.50	<3.0	NS	NS
	3/4/03	380	12,000	< 0.50	< 0.50	< 0.50	<0.50	<3.0	NS	NS
Well MW	-2 Destroye	ed 6/2/03								
MW-3	1/25/01	<50	660	< 0.50	1.4	< 0.50	< 0.50	< 0.50	15	NS
	3/7/01	<50	210	< 0.50	< 0.50	< 0.50	<0.50	< 0.50	NS	ND
	6/7/01	<250	1,400	<1.3	<1.3	<1.3	<1.3	8.6	NS	ND

Table A-2 Historic Groundwater Analytical Results Simpson Samoa Former AST Site, Samoa, California (in ug/L)¹

Sample	Sample	TDI102	TDIID3	\mathbf{B}^4	T ⁴	\mathbf{E}^4	X ⁴	MTBE ⁵	ETH ⁶	Fuel
Location	Date	TPHG ²	TPHD ³	В	ı	Е	λ	MIIDE	EIH	Oxygenates ⁷
MW-3	9/6/01	<200	2,000	<1.0	<1.0	<1.0	<1.0	7.9	<1,000	ND
(cont'd)	12/6/01	<200	610	<1.0	<1.0	<1.0	<1.0	4.9	< 5.0	ND
	3/6/02	<200	660	<1.0	<1.0	<1.0	<1.0	2.8	< 5.0	ND
	6/7/02	93	2,300	< 0.50	< 0.50	<0.50	< 0.50	2.5	NS	ND
	9/10/02	160	2,800	< 0.50	< 0.50	<0.50	<0.50	<3.0	NS	NS
	12/27/02	86	1,600	< 0.50	< 0.50	<0.50	< 0.50	<3.0	NS	NS
	3/4/03	84	1,300	< 0.50	<0.50	< 0.50	< 0.50	<3.0	NS	NS
	6/11/03	<50	590	< 0.50	< 0.50	< 0.50	<0.50	<3.0	NS	NS
	9/8/03	74	1,300	< 0.50	< 0.50	<0.50	<0.50	<3.0	NS	NS
	3/2/04	NS	540	NS	NS	NS	NS	NS	NS	NS
	9/1/04	NS	690	NS	NS	NS	NS	NS	NS	NS
	3/4/05	NS	660	NS	NS	NS	NS	NS	NS	NS
	8/30/05	NS	1,200	NS	NS	NS	NS	NS	NS	NS
MW-4	1/26/01	<50	460	< 0.50	< 0.50	< 0.50	<0.50	4.4	<5.0	NS
	3/7/01	< 50	280	< 0.50	< 0.50	<0.50	<0.50	5	NS	ND
	6/7/01	<100	170	<0.50	< 0.50	<0.50	<0.50	2.6	NS	ND
	9/6/01	<50	240	<0.50	< 0.50	<0.50	<0.50	2.5	<500	ND
	12/6/01	<200	250	<1.0	<1.0	<1.0	<1.0	2.7	<5.0	ND
	3/6/02	<200	500	<1.0	<1.0	<1.0	<1.0	6.4	<5.0	ND
	9/10/02	<50	390	<0.50	<0.50	<0.50	<0.50	<3.0	NS	NS
	3/4/03	<50	310	<0.50	<0.50	<0.50	<0.50	<3.0	NS	NS
	6/11/03	<50	170	<0.50	<0.50	<0.50	<0.50	<3.0	NS	NS
	9/8/03	<50	210	<0.50	<0.50	<0.50	<0.50	3	NS	NS
	3/2/04	NS	120	NS	NS	NS	NS	NS	NS	NS
	9/1/04	NS	450	NS	NS	NS	NS	NS	NS	NS
	3/4/05	NS	210	NS	NS	NS	NS	NS	NS	NS
	8/30/05	NS	380	NS	NS	NS	NS	NS	NS	NS
MW-5	1/26/01	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	<5.0	NS
	3/7/01	<50	<50	<0.50	<0.50	<0.50	<0.50	< 0.50	NS	ND
	6/7/01	< 50	< 50	<0.50	0.96	< 0.50	<0.50	< 0.50	NS	ND
	9/6/01	<50	<50	<0.50	0.50	< 0.50	<0.50	< 0.50	< 500	ND
	12/6/01	<50	<50	<0.50	<0.50	< 0.50	<0.50	<0.50	<5.0	ND
	3/6/02	<50	66	<0.50	<0.50	<0.50	<0.50	< 0.50	<5.0	ND
	9/10/02	<50	<50	<0.50	< 0.50	<0.50	<0.50	<3.0	NS	NS
	3/4/03	<50	150	<0.50	<0.50	<0.50	<0.50	<3.0	NS	NS
	6/11/03	<50	150	< 0.50	< 0.50	< 0.50	< 0.50	<3.0	NS	NS

Table A-2 Historic Groundwater Analytical Results Simpson Samoa Former AST Site, Samoa, California (in ug/L)¹

Sample Location	Sample Date	TPHG ²	TPHD ³	\mathbf{B}^4	${f T^4}$	${\bf E^4}$	X ⁴	MTBE ⁵	ETH ⁶	Fuel Oxygenates ⁷
MW-5	9/8/03	<50	<50	< 0.50	< 0.50	< 0.50	< 0.50	<3.0	NS	NS
(cont'd)	3/2/04	NS	81	NS	NS	NS	NS	NS	NS	NS
	9/1/04	NS	51	NS	NS	NS	NS	NS	NS	NS
	3/4/05	NS	<50	NS	NS	NS	NS	NS	NS	NS
	8/30/05	NS	<50	NS	NS	NS	NS	NS	NS	NS
WP-101	6/12/02	NS	12 0	<0.5	< 0.5	< 0.5	<0.5	<3.0	NS	NS
WP-102	6/12/02	NS	14 0	< 0.5	<0.5	< 0.5	<0.5	<3.0	NS	NS
WP-103	6/12/02	NS	110	<0.5	< 0.5	< 0.5	<0.5	<3.0	NS	NS
WP-104	6/12/02	NS	140	<0.5	< 0.5	< 0.5	< 0.5	<3.0	NS	NS
WP-201@ 3'-6'	9/1/04	NS	24,000	NS	NS	NS	NS	NS	NS	NS
WP-201@ 6'-9'	9/1/04	NS	420	NS	NS	NS	NS	NS	NS	NS

- 1. ug/L: micrograms per Liter
- 2. TPHG: Total Petroleum Hydrocarbons as Gasoline, analyzed in general accordance with U.S. Environmental Protection Agency (EPA) Method No. 8260B
- 3. TPHD: Total Petroleum Hydrocarbons as Diesel, analyzed in general accordance with EPA Method No. 3510
- 4. BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes, analyzed in general accordance with EPA Method No. 8260B
- 5. MTBE: Methyl Tertiary-Butyl Ether, analyzed in general accordance with EPA Method No. 8260B
- 6. ETH: Ethanol, analyzed in accordance with EPA Method No. 8260B
- 7. Fuel oxygenates: Diisopropyl Ether (DIPE), Ethyl Tertiary-Butyl Ether (ETBE), Tertiary-Amyl Methyl Ether (TAME), Tertiary-Butyl Alcohol, methanol, and ethanol, analyzed in general accordance with EPA Method No. 8260B
- 8. NS: Not Sampled
- 9. <: Denotes a value that is "less than" the method detection limit.
- 10. ND: Not present at the laboratory detection limit

Table A-3 Historic Groundwater Elevation Data, Quarterly Sampling Simpson Samoa Former AST Site, Samoa, California

Sample	Sample	Top of Casing Elevation	Depth to Water ²	Groundwater Elevation
Location	Date	(feet MSL) ¹	(feet)	(feet MSL)
MW-1	2/9/01	14.74	6.94	7.8
	3/7/01		6.35	8.39
	4/6/01		6.79	7.95
	5/7/01		7.13	7.61
	6/7/01		7.41	7.33
	7/16/01		7.68	7.06
	8/6/01		7.84	6.9
	9/6/01		8	6.74
	10/5/01		8.11	6.63
	11/6/01		8.13	6.61
	12/6/01		6.44	8.3
	2/8/02		4.6	10.14
	3/6/02		4.52	10.22
	6/7/02		5.89	8.85
	9/10/02		7.21	7.53
	12/27/02		4.85	9.89
	3/4/03		4.01	10.73
	6/11/03		4.78	9.96
	9/8/03		6.27	8.47
	3/2/04		3.76	10.98
	9/1/04		7.07	7.67
	3/4/05		4.59	10.15
	8/30/05		6.52	8.22
MW-2	2/9/01	12.64	5.02	7.62
	3/7/01		4.51	8.13
	4/6/01		4.91	7.73
	5/7/01		5.27	7.37
	6/7/01		5.54	7.1
	7/16/01		5. <i>7</i> 7	6.87
	8/6/01		5.97	6.67
	9/6/01		6.53	6.11
	10/5/01		$(5.76)/NM^3$	NA ⁴
	11/6/01		(5.60)/9.43	NA
	12/6/01		(4.62)/6.57	NA
	2/8/02		3.08	9.56
	3/6/02	1	NM	NA
	6/7/02		4.38	8.26
	9/10/02		5.51	7.13
	12/27/02	1	3.76	8.88
	3/4/03		2.22	10.42
Well MW-2	Destroyed 6/	2/03		

Table A-3 Historic Groundwater Elevation Data, Quarterly Sampling Simpson Samoa Former AST Site, Samoa, California

Sample	Sample	Top of Casing Elevation	Depth to Water ²	Groundwater Elevation
Location	Date	(feet MSL) ¹	(feet)	(feet MSL)
MW-3	2/9/01	12.54	4.57	7.97
	3/7/01		4	8.54
	4/6/01		4.59	7.95
	5/7/01		4.98	7.56
	6/7/01		5.28	7.26
	7/16/01		5.54	7
	8/6/01		5.74	6.8
	9/6/01		5.89	6.65
	10/5/01		5.99	6.55
	11/6/01		5.98	6.56
	12/6/01		3.95	8.59
	2/8/02		2.65	9.89
	3/6/02		2.65	9.89
	6/7/02		4.13	8.41
	9/10/02		5.28	7.26
	12/27/02		2.81	9.73
	3/4/03		2.13	10.41
	6/11/03		3.03	9.51
	9/8/03		4.33	8.21
	3/2/04		1.99	10.55
	9/1/04		5.09	7.45
	3/4/05		3.01	9.53
	8/30/05		4.57	7.97
MW-4	2/9/01	12.24	4.68	7.56
	3/7/01		4.09	8.15
	4/6/01		4.43	7.81
	5/7/01		4.85	7.39
	6/7/01		5.19	7.05
	7/16/01		5.36	6.88
	8/6/01		5.55	6.69
	9/6/01		5.65	6.59
	10/5/01		5.74	6.5
	11/6/01		5.67	6.57
	12/6/01		3.78	8.46
	2/8/02		2.63	9.61
	3/6/02		2.77	9.47
	6/7/02		4.06	8.18
	9/10/02		5.11	7.13
	12/27/02		2.79	9.45
	3/4/03		2.08	10.16
	6/11/03		2.97	9.27

Table A-3
Historic Groundwater Elevation Data, Quarterly Sampling
Simpson Samoa Former AST Site, Samoa, California

Sample	Sample	Top of Casing Elevation	Depth to Water ²	Groundwater Elevation
Location	Date	(feet MSL) ¹	(feet)	(feet MSL)
MW-4	9/8/03		4.09	8.15
(cont'd)	3/2/04		2.01	10.23
· ·	9/1/04		4.91	7.33
	3/4/05		2.98	9.26
	8/30/05		4.37	7.87
MW-5	2/9/01	11.98	3.31	8.67
	3/7/01		3.38	8.6
	4/6/01		3.63	8.35
	5/7/01		4.19	7.79
	6/7/01		4.6	7.38
	7/16/01		4.83	7.15
	8/6/01		4.99	6.99
	9/6/01		5.17	6.81
	10/5/01		5.28	6.7
	11/6/01		5.05	6.93
	12/6/01		3.14	8.84
	2/8/02		3.03	8.95
	3/6/02		3.07	8.91
	6/7/02		3.64	8.34
	9/10/02		4.5	7.48
	12/27/02		2.35	9.63
	3/4/03		3.02	8.96
	6/11/03		3.3	8.68
	9/8/03		3.75	8.23
	3/2/04		3.04	8.94
	9/1/04		4.33	7.65
	3/4/05		3.07	8.91
	8/30/05		3.86	8.12

1. MSL: Mean Sea Level

2. Below top of casing

3. NM: Not Measured

4. NA: Not Applicable

Table A-4
Historic DO, DCO ₂ , and ORP Measurement Results
Simpson Samoa Former AST Site, Samoa, California

Sample	npson Samoa Fo	DO^1	DCO ₂ ³	ORP ⁴
Location	Sample Date	(ppm) ²	(ppm)	(mV) ⁵
MW-1	3/7/01	0.64	170	77
	6/7/01	0.37	150	108
	9/6/01	0.18	140	162
	12/6/01	0.42	130	47
	3/6/02	0.28	150	99
	9/10/02	0.27	120	179
	3/4/03	0.53	100	236
	6/11/03	0.42	130	249
	9/8/03	0.63	150	257
	3/2/04	0.63	70	287
	9/1/04	0.51	120	8
	3/4/05	0.74	150	72
	8/30/05	1.23	200	-42
MW-2	3/7/01	0.37	170	-6
	6/7/01	0.08	225	10
	9/6/01	0.11	200	84
	12/6/01	NM ⁶	NM	NM
	3/6/02	NM	NM	NM
	9/10/02	NM	147	250
	3/4/03	1.13	180	218
Well MW-2	Destroyed 6/2/0	3		
MW-3	3/7/01	0.72	150	-7
	6/7/01	0.45	230	2
	9/6/01	0.18	200	67
	12/6/01	0.42	120	11
	3/6/02	0.48	150	83
	6/7/02	0.69	200	80
	9/10/02	0.78	160	145
	12/27/02	0.91	170	233
	3/4/03	0.55	170	246
	6/11/03	0.43	140	229
	9/8/03	0.39	130	236
	3/2/04	0.75	100	274
	9/1/04	1.11	120	-112
	3/4/05	0.9	100	0
	8/30/05	1.64	90	-110

Table A-4 Historic DO, DCO₂, and ORP Measurement Results Simpson Samoa Former AST Site, Samoa, California

Sample	I Santou 1	DO^1	DCO ₂ ³	ORP ⁴
Location	Sample Date	(ppm) ²	(ppm)	(mV) ⁵
MW-4	3/7/01	0.41	120	2
	6/7/01	0.12	160	13
	9/6/01	0.1	120	62
	12/6/01	0.32	120	66
	3/6/02	0.24	170	95
	9/10/02	0.22	80	137
	3/4/03	0.45	150	217
	6/11/03	0.31	90	231
	9/8/03	0.7	120	222
	3/2/04	0.66	150	281
	9/1/04	1.04	70	-62
	3/4/05	1.12	90	-30
	8/30/05	0.76	80	-100
MW-5	3/7/01	0.45	60	-23
	6/7/01	0.07	100	-45
	9/6/01	0.13	60	36
	12/6/01	0.32	80	10
	3/6/02	0.32	100	75
	9/10/02	0.23	60	140
	3/4/03	0.63	90	228
	6/11/03	0.32	80	241
	9/8/03	0.3	80	224
	9/1/04	0.48	40	-77
	3/4/05	0.77	80	57
	8/30/05	0.77	50	-100

^{1.} DO: Dissolved Oxygen, field measured using portable instrumentation.

^{2.} ppm: Measurement concentration, in parts per million.

^{3.} DCO₂: Dissolved Carbon Dioxide, field measured using a field test kit.

^{4.} ORP: Oxidation-Reduction Potential measured using portable instrumentation.

^{5.} mV: millivolts

^{6.} NM: Not measured

Table A-5
Historic Monitoring Well MW-2 Free Product Recovery Data
Simpson Samoa Former AST Site, Samoa, California

Date	Depth to Free Product (feet)	Depth to Water (feet)	Free Product Thickness (feet)	Free Product Recovered (gallons)	Groundwater Recovered (gallons)	Total Fluid Recoverd (gallons)
11/6/01	5.6	9.43	3.83	0	0	0.00
11/29/01	4.55	9.45	4.90 ¹	1	4.5	5.50
12/6/01	4.62	6.57	1.95	0.25	2.75	3.00
1/10/02	2.92	3.04	0.11	NR²	NR	NR
1/16/02	3.53	3.56	0.03	INS ³	2	2.00
1/18/02	3.53	3.55	0.02	INS	2	2.00
1/21/02	3.43	3.44	0.01	INS	2	2.00
1/23/02	NA ⁴	3.17	0	0	1	1.00
1/25/02	NA	3.29	0	0	1	1.00
2/8/02	NA	3.08	0	0	0	0.00
3/6/02	3.12	3.13	0.01	INS	2	2.00
4/17/02	NA	3.37	0	0	0.25	0.25
5/17/02	4.11	4.12	0.01	INS	2	2.00
6/7/02	4.38	4.38	< 0.015	INS	2	2.00
9/10/02	5.51	5.51	0	INS	1	4.80
12/27/02	3.75	3.76	0.01	INS	4	4.00
3/4/03	2.22	2.22	0	0	6.25	6.25

Well MW-2 Destroyed

- 1. Product thickness recovered to 1.79 feet after 24 hours
- 2. NR: Not recorded
- 3. INS: Insufficient product for measurement
- 4. NA: Not applicable, no product present
- 5. <: Denotes "less than"

CONSULTING ENGINEERS & GEOLOGISTS. INC.

480 Hemsted Drive * Redding, CA 96002* Tel: 530.221.5424 * FAX: 530.221.0135 *E-mail: shninfo@shn-redding.com 812 W. Wabash *Eureka, CA 95501 * Tel: 707.441.8855 * FAX: 707.441.8877 *E-mail: shninfo@shn-engr.com

DAILY FI	ELD REPORT	JOB NO 00060 Page of 8		
PROJECT NAME Simpson Samoo AST	CLIENT/OWNER Simpson Samoa Corporation	DAILY FIELD REPORT SEQUENCE NO		
GENERAL LOCATION OF WORK Samoa, CA	OWNER/CLIENT REPRESENTATIVE	DATE DAY OF WEEK		
Semi-angal sampling	Foggy to Clear	PROJECT ENGINEER/ SUPERVISOR FRANS LOWING 19		
SOURCE & DESCRIPTION OF FILL MATERIAL	KEY PÉRSONS CONTACTED	David R. Pains		
0836 GREIVED at site 0837 I started taking each well by serubb; 0917 I started taking 0950 I started taking cought in a gradua 1015 I started punging to in a graduated 5 g 1050 I simpled mis secur 1058 I started punging to cought in a graduat 1120 I sampled mw-1 1127 I started punging to cought in a graduat 1135 I sampled mw-3 1205 I sampled mw-3 1205 I sampled mw-3 1205 I sampled mw-3 1205 I sampled mw-4 1219 OFF SITE	my it with liquinex then Rinson DO Readings. MW - 5 with a disposable base ted 5 gal, bucket, pointed to with a disposable baster, pointed to with a disposable baster, pointed to gal, bucket. Secured well with cap as held. Secured well with cap as held to gal, bucket. Secured well with cap as secured well with cap and econed well with cap as secured well with cap and and pungs well with cap and and pungs well with cap and and pungs well with cap and	lea punga water was so punga water was funga water was complet funga water was complet and lid. punga water was		
COPY GIVEN TO:	REPORTED BY	D. 48 P		

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

Groundwater Elevations

Job No.:	000060		Name:		Paine
Client:	SIMPSO	N SAMOA CORPORA		8-30-05	
Location:	SAMOA	,CA	Weath	er: Foggy to s	emi-clear
Sample I		Time of Reading	Top of Casing Elevation (feet)	Depth To Water (feet)	Water Surface Elevation (feet)
MW		0900	14.74	6.52	8.22
MW		0903	12.54	4.57	7.97
MW		0905	12.24	4.37	7,87
MW	7-5	0857	11.98	3,86	8.12
					<u> </u>
		·			
				·	
And the second s	***************************************				

					·
				·	

EQUIPMENT CALIBRATION SHEET

Name:	David R. Paine
Project Name:	Simpson Samoe AST
Reference No.:	000060
Date:	8-30-05
Equipment:	Turbidity Dissolved Di
Description of 0	Calibration Procedure and Results:
pH eEc	meter 15 calibrated using a 2 buffer with 7:01 and 4:01, the Ec (conductivity) 15
	1413 115.
_	eter is self calibrating with the
	<u> </u>

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

Water	Samp	ling	Data	Sheet

			vvalei	Sampin	5 Data	Difeet	•		
Project N	Name: Sin	yson Sa	moc,		Date/T	ime:	_&	- 30 - 05	
Project No.: 000060					Sample	r Name:	Dai	id P. Pe) ^ रामन
Location: Samos CA						Sample Type: Ground ur. Len			
Well #:		IW-5			Weathe	er	Fog	gy to c	lear
Hydroca	arbon Thickr	ness/Depth (feet):/	VA	Key Ne	eded:	<u>Y</u> E	5 5	Dolphia
Total Well (feet		Initial Depth Water (feet		Height of Wate Column (feet)		0.163 gal 0.653 ga			1 Casing Volume (gal)
15.20	-	3.86	=	11.34	x	0.16	3	=	1.85
					1			Water	
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Tem (°F)	-	pН	Removed (gal)	Comments
09220	0.77)						0 901	
0950		50	100					0.15 gal	
0958	1		-	463	66.	30 6	.77	2 901	
1004	No Flow			465	66.3	5 6	80	375gal	
1009	then cell		·	469	66	6.	81	5.75 gal.	
1								J	
1050	Samp	1- Time							
Pu	urge Method:	Hand I		_		Total Vo	lume R	emoved: 5.	25 (gal)
Laborato	ory Informa								
San	nple ID		ype of ainers	Preservat Type	1	Labor	atory	1	Analyses
mw-5		2.60ml	UDHS	None		NCL		TPHD	
			. *						
			-						
	Well Condi	tion: Good	-						
.	Rema								
•		Recha	inaid t	0 3,81	at	Sam	nle	Time	
			7			7			

CONSULTING ENGINEERS & GEOLOGISTS, INC.

812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 •shninfo@shn-engr.com

Water Sampling Data Sheet

Project 1	Name: <u>Sim</u>	pson Sa	moci		Date/	Time:	<u> </u>	30-05	
Project l	` ,				Sampler Name: David P. Paing				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Location	n:S_	amog CA				Sample Type: Ground water			
Well #:		w-1			Weatl	her	Foc	ay to cle	
Hydroc	arbon Thickn		feet):^	iA	Key N	Veede	d: <u>yı</u>)1	Dolphia
Total Wel (fee	<u>t)</u>	pth Initial Depth to Height of Wat Water (feet) = Height of Wat					3 gal/ft (2-inc 53 gal/ft (4-in		1 Casing Volume (gal)
15,00) - [6.52	=	8 48	x	0	,163	=	1.38
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	1	mp F)	pН	Water Removed (gal)	Comments
0929 (1.23							O gal	
1015		200	-42		-			O gal	
1025	V			386	65	160	6.10	0.25 gal 1.50 gal 2.25 gal	
10 30	No Flow	•		422	64		6.21	225 gal	
1035	then cell			376	6	3,90	6.18	4.0001	
1039				365	63	3.7°	6.14	5,50%	
1045				361	64	.10	6.11	7001	
								' /	
1120	Samol	12 Time							
Pu	urge Method:		ail	: -		Tota	al Volume Re	emoved: <u>1</u> , 0	(gal)
Laborato	ory Informat	ion		,					
San	nple ID	# & T	ype of niners	Preservati Type	ve /	La	boratory	A	Analyses
mw-1		2 60ml	UDAS	None		NC	L	TPHD	
		-							
							٠.		
	Well Condit	ion: Good							
	Rema								
	Recharged to 6,50 at sample Time								
	The state of the s								

CONSULTING ENGINEERS & GEOLOGISTS, INC. 812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

		<i>J</i> 012 W. W	abasii Edicia	, -, -, -, -, -, -, -, -, -, -, -, -, -,					
			Water	Samplin	g Data	s Sh	eet	-	
Project N	Name: Simp	oson Sq.	noc,		Date/Time: 8 30 -05				
Project N	,	0060			Sample	r Nar	me: Dav		(In-)
Location		mog CIA			Sample	Тур	e: Grou	nd water	
Well #:		w-3			Weath	er	Foge	y lo c	lear
Hydroca	arbon Thickn		feet):	NA	Key Ne	eeded	l: <u>ye</u>	<u>s</u> 2	Dolphin
Total Well (feet		Initial Depth Water (feet)	_	leight of Wate Column (feet)		0.65	3 gal/ft (2-inch 3 gal/ft (4-inc		1 Casing Volume (gal)
14.60) - [4.57	=	10.03	x	0	,163	=	1.63
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Ten (°F	-	рН	Water Removed (gal)	Comments
0936 (1.64	•						O gal	
1058		90	-110					1.25 gal	
1106	1	,		576	66	θ^{c}	6.51	1,25 gal,	
1110	No Flow	a reconst		585	Colore	4	6,52	1.25 gal. 3.25 gal	
1/14	then cell			594	66.	80	6.57	5 gal.	
<i></i>									
·									
1155	Sample	1. Time							
Pı	urge Method:	Hand I	ail	_		Tota	al Volume Re	emoved: 5,	oo (gal)
Laborat	ory Informat	ion							
	nple ID	# & T	ype of ainers	Preserva Typ	`	La	aboratory	1	Analyses
mw-3		2.60ml	UDAS	None		NC	L	TPHD	
								-	
	<u>, , , , , , , , , , , , , , , , , , , </u>								
							-		
		tion: <u>Good</u>							
N	Rema	arks:			· /				

CONSULTING ENGINEERS & GEOLOGISTS, INC. 812 W. Wabash • Eureka, CA 95501-2138 • 707/441-8855 • FAX: 707/441-8877 • shninfo@shn-engr.com

)			Water	Complin	a Dat	a Sha	not		
Project ?	Viamo: C.	·		Samplin	Date/			* 30 * 05	
		yson Sa				er Nam) ^ } Inul
Project I		00060			-	le Type:			
Location		imog CA			Weath			ound wite	*
Well #:		1W-4	c	1.0			w.	/ / !	lear
Hydroc	arbon I hicki	ness/Depth (feet):/	Y <i>F1</i>	Key IN	leeded:		ES	Dolphia
Total Wel		Initial Depth Water (feet		Height of Wate Column (feet)		0.653	gal/ft (2-in gal/ft (4-ir		1 Casing Volume (gal)
15.20	5 -	4.37	=	10.88	x	0,1	163	=	1.77
Time	DO (ppm)	CO ₂ (ppm)	ORP (mV)	EC (uS/cm)	Tei	-	рН	Water Removed (gal)	Comments
0942	0.76)						0.001	
1122		80	-100					O gol	
1137	V			743	65	170	6.54	12 00%	
1142	No Flow			255	65	1	6.61	325 gal	
1147	then cell			768	65	50 6	6.58	sist gal.	
,									
31000000									
1205	Samo	1- Time							
Pı	arge Method:	Hand B				Total	Volume F	Removed: 5,	50 (gal)
	nple ID		ype of	Preserva	tive /	Lab	oratory		Analyses
Ou i	iipic 12		ainers	Туре					
mw-4		2.60ml	UDKS	None		NCL		TPHD	
		tion: Good					-		
	Rema	arks:							

1 JIM SMITH DRIVE SAMOA, CA **RWQCB CASE # 1NHU764** Collected On: 3/4/05 SIMPSON SAMOA AST The water from your site: 090000 Client Name: SHN ref#

Has been tested and certified as acceptable to be discharged into the City of Eureka municipal sewer system.

Amount Discharged:

26 GALLONS

Date Discharged: 4

4/29/05

Certified by:

DAVID R. PAINE

SHN CONSULTING ENGINEERS & GEOLOGISTS, INC.

City of Eureka Wastewater Discharge Permit #65

September 02, 2005

Simpson Timber Company P.O. Box 1089 Arcata, CA 95518

Attn: Rob Ricci

RE: 000060, Simpson Samoa AST

SAMPLE IDENTIFICATION

Fraction	Client Sample Description
01A	MW-5
02A	MW-1
03A	., MW-3
04A	MW-4

Order No.: 0508821 Invoice No.: 52541 PO No.: 1079-04-AD-0

ELAP No. 1247-Expires July 2006

ND = Not Detected at the Reporting Limit

Limit = Reporting Limit

All solid results are expressed on a wetweight basis unless otherwise noted.

REPORT CERTIFIED BY

Laboratory Supervisor(s)

QA Unit

Jesse G. Chaney, Jr. Laboratory Director North Coast Laboratories, Ltd.

Date: 02-Sep-05

CLIENT:

Simpson Timber Company

Project:

000060, Simpson Samoa AST

Lab Order:

0508821

CASE NARRATIVE

TPH as Diesel:

Samples MW-1, MW-3 and MW-4 contain material similar to degraded or weathered diesel oil.

Date:

02-Sep-05

WorkOrder:

0508821

ANALYTICAL REPORT

Client Sample ID: MW-5

Received: 8/30/05

Collected: 8/30/05 10:50

Lab ID: 0508821-01A

Test Name: TPH as Diesel

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Result Parameter ND TPHC Diesel (C12-C22) Surrogate: N-Tricosane 77.4 Limit 50 70-130

Units µg/L % Rec $\underline{\mathbf{DF}}$ Extracted 1.0 8/31/05 8/31/05 1.0

Analyzed 9/1/05 9/1/05

Client Sample ID: MW-1

Received: 8/30/05

Collected: 8/30/05 11:20

Lab ID: 0508821-02A

Test Name: TPH as Diesel

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter TPHC Diesel (C12-C22) Surrogate: N-Tricosane Result 68 82.6 <u>Limit</u> 50 70-130

Units µg/L % Rec

Received: 8/30/05

% Rec

 $\underline{\mathbf{DF}}$ 1.0 1.0

Extracted 8/31/05 8/31/05

Collected: 8/30/05 11:55

Analyzed 9/1/05 9/1/05

Client Sample ID: MW-3

Lab ID: 0508821-03A

Test Name: TPH as Diesel

Parameter TPHC Diesel (C12-C22) Result 1,200 103

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B Limit Units 50 µg/L

DF 1.0 1.0

Extracted 8/31/05 8/31/05

Analyzed 9/1/05 9/1/05

Client Sample ID: MW-4

Surrogate: N-Tricosane

Surrogate: N-Tricosane

Lab ID: 0508821-04A

Test Name: TPH as Diesel

Received: 8/30/05

Collected: 8/30/05 12:05

Reference: EPA 3510/GCFID(LUFT)/EPA 8015B

Parameter TPHC Diesel (C12-C22) Result 380 Limit 50 70-130

70-130

Units μg/L. % Rec \mathbf{DF} 1.0

Extracted 8/31/05 8/31/05

Analyzed 9/1/05

CLENT: Work Order: Project:	Simpson Timber Company 0508821 000060. Simpson Samoa AST	rt Company on Samoa AST		i de la companya de l					QC SUI	MMAR	QC SUMMARY REPORT Method Blank	RT lank
	4											
Sample ID: MB-14136		Batch ID: 14136	Test Code:	Code: TPHDIW Units: µg/L	Jnits: µg/L		Analysis	Date: 9/1/09	Analysis Date: 9/1/05 1:48:47 AM	Prep Da	Prep Date: 8/31/05	
Client ID:			Run ID:	ORGC7_050831A	⋖		SeqNo:	528170	0			
Analyte		Result	Limit	imit SPK value SPK Ref Val	PK Ref Val	% Rec	LowLimit	HighLimit	% Rec · LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
TPHC Diesel (C12-C22)	-C22)	QN	20									
N-Tricosane		35.7	0.10	20.0	0	71.5%	20	130	0			

J - Analyte detected below quantitation limits ND - Not Detected at the Reporting Limit Qualifiers:

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

North Coast Laboratories, Ltd.

CLIENT: Work Order: Project:	Simpson Timber Company 0508821 000060, Simpson Samoa AST							QC SUMMARY REPORT Laboratory Control Spike	TMAR. boratory	JMIMARY REPORT Laboratory Control Spike	RT
Sample ID: LCS-14136 Client ID:	4136 Batch ID: 14136	Test Code: TPHDIW Run ID: ORGC7_	TPHDIW Un	Units: µg/L 331A		Analysis SeqNo:	Date: 8/31/05 528167	Analysis Date: 8/31/05·11:47:28 PM SeqNo: 528167	Prep Da	Prep Date: 8/31/05	
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	Ref Val	%RPD	%RPD RPDLimit Qual	Qual
TPHC Diesel (C12-C22) N-Tricosane	.C22) 569.0 43.7	50	500	0	114%	67 70	120	0 0			
Sample ID: LCSD-14136 Client ID:	14136 Batch ID: 14136	Test Code: TPHDIW Run ID: ORGC7_	TPHDIW Un	Units: µg/L 331A	<i>:</i>	Analysis SeqNo:	Analysis Date: 9/1/05 12:07:35 AM SeqNo: 528168	12:07:35 AM	Prep Da	Prep Date: 8/31/05	
Analyte	Result	Limit	SPK value	SPK value SPK Ref Val	% Rec	LowLimit	% Rec LowLimit HighLimit RPD Ref Val	Ref Val	%RPD	RPDLimit	Qual
TPHC Diesel (C12-C22) N-Tricosane	C22) 583.9 42.6	50	500	0 0	117% 85.2%	67	120 130	569 43.7	2.59%	15	

Qualifiers: ND - Not Detected at the Reporting Limit
J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

R - RPD outside accepted recovery limits

NORTH COA	LABORATORIES I	5680 West End Road • Arcata • CA 95521-9202 707-822-4649 Fax 707-823-6831
X	なる	A

Chain of Custody

887
0508

٠.

□ 5–7 Day

☐ 48 Hr ☐ 5 Day

□ Other:

PRIOR AUTHORIZATION IS REQUIRED FOR RUSHES

State Forms □

Preliminary: FAX ☐ Verbal ☐ REPORTING REQUIREMENTS:

Final Report: FAX ☐ Verbal ☐

	LABORATORY NUMBER:
Attention: Rob Rice i	TAT: 0.24 Hr 0.48 Hr
lesults & Invoice to: Simpson Timber Company	STD (2–3 WK)
Address: P.O. Box 1089	PRIOR AUTHORIZATION IS
ARraba CH 95518	333
hone: 268 3000	REPORTING REQUIREM
copies of Report to: SHN Fear C Laure	Preliminary: FAX Ve
4 Ave. Eu	Einal Report: FAX
Sampler (Sign & Print): David P. Pain-	CONTAINER CODES: 1—)

			1	a								
	SISAT	_	ሥ	L	×	×	×	×				
The A state of the	Allon	Somua AST		DATE TIME MATRIX*	8/30/05/1050 64	08//	1155	1, 1205 1	(4)	2-		
rillity.	OOOO 60	Simpson So		AMPLEID	5	, ' ' '	3	, ,			10425	

me ma

ME mil

Global ID" T 0602393498	SAMPLE CONDITION/SPECIAL INSTRUCTIONS
Global ID"T 0602393498	EDF
	Global ID" T 0602343498
	9

PRESERVATIVE CODES: a—HNO₃; b—HCl; c—H₂SO₄;

13-brass tube; 14-other

Project Number

Purchase Order Project Name:

AB ID

d-Na₂S₂O₃; e-NaOH; f--C₂H₃O₂Čl; g--other

3—500 ml pl; 4—1 L Nalgene; 5—250 ml BG; 6—500 ml BG; 7—1 L BG; 8—1 L cg; 9—40 ml VOA; 10—125 ml VOA; 11—4 oz glass jar; 12—8 oz glass jar;

CONTAINER CODES: 1-1/2 gal. pl; 2-250 ml pl;

	SÁMPLE DISPOSAL	NCL Disposal of Non-Contaminated	VI ICTORY	SHIPPED VIA: UPS Air-Ex Fed-Ex B
	(Sign) DATE/TIME	25.75.00 29.27		
	AE RECEIVED BY	5 th 0x		22
	DATE/JU	arr = 8/30/0	//	
47.0	ED BY (Sign & Print)	David R.		
	RELINQUISH	as P. Pamie		

*MATRIX: DW=Drinking Water; Eff=Effluent; Inf=Influent; SW=Surface Water; GW=Ground Water; S=Soil; O=Other.

Bus (Hand

ALL CONTAMINATED NON-AQUEOUS SAMPLES WILL BE RETURNED TO CLIENT